
Raw Panel

Integrate SKAARHOJ panels with your product!

Your parameter values

Your colors

Your encoder knobs

Your button press

Your text

Your images

=Your panel!

★ All SKAARHOJ panels supported

★ Easy to get started

★ IP Networked - TCP server

★ Event based triggers

★ Feedback for LEDs and displays

★ ASCII or binary encoded messages

★ Self describing topology

★ Discoverable via mDNS/zeroconf

★ Panel Emulator

★ Helpful tool chain

Raw Panel

SKAARHOJ panels are designed for broadcast and AV live productions. It's not a toy, not a game pad, not a
compromise. We are dedicated to supply every type and form factor of tactile control panels the broadcast market
needs. Raw Panel is the internal backbone protocol in any SKAARHOJ panel. It means any SKAARHOJ panel is
equally easy to integrate with your software or hardware solution. The panels are 100% IP with Power over Ethernet
(PoE) and you simply connect one or more clients via a TCP connection to the panel.

The panel sends triggers back over TCP as the user presses buttons, turns knobs, moves a fader or a joystick. In
return your product can send color codes and display text or graphics back to the panel.

The messaging protocol is uniquely capable of operating in ASCII or binary mode. In ASCII mode all messages are
human readable and easy to decipher. In the binary encoding your get more efficiency for your software integration.

Raw Panel includes a concept for panels to communicate their topology. This makes a panel completely self
describing. The topology reveals all relevant details for any hardware component on the panel so a connected
system can build configuration interfaces for any current and future Raw Panel compliant device.

Panels are also discoverable with ZeroConf/mDNS and SKAARHOJ provides a powerful and free set of tools to
emulate any SKAARHOJ panel and help explore the Raw Panel protocol.

Easy!

Just connect...
Type "list" and enter, the panel will tell you it's identity

Try to trigger a hardware component (HWC) like a button or turn an encoder knob - they will let you
know immediately :-)

Rack Control Duo

Inline 22

RCP Pro

Rack Control Uno

(Insert your hero product here)

Triggers
T-Bar:
HWC#50=Abs:0

HWC#50=Abs:22

HWC#50=Abs:39

HWC#50=Abs:66

HWC#50=Abs:92

...

HWC#50=Abs:967

HWC#50=Abs:988

HWC#50=Abs:1000

Encoder (Left/Right turns):
HWC#86=Enc:1

HWC#86=Enc:2

HWC#86=Enc:6

HWC#86=Enc:1

HWC#86=Enc:-4

HWC#86=Enc:-3

HWC#86=Enc:-6

HWC#86=Enc:-5

Four-way buttons
HWC#55.8=Down

HWC#55.8=Up

HWC#55.1=Down

HWC#55.1=Up

HWC#55.2=Down

HWC#55.2=Up

HWC#55.4=Down

HWC#55.4=Up

(Digits 1,2,4 and 8 are edge detection)

NKK Broadcast Buttons
HWC#12=Down

HWC#12=Up

HWC#13=Down

HWC#12=Up

(Straight up old school)

Feedback

"On" and Amber:
HWC#53=4

HWCc#53=136

Alternative JSON encoding:

{"HWCIDs":[53],"HWCMode":

{"State":4},"HWCColor":{"ColorIndex":{"Index":8}}}

Blue as RGB (3*2bit):
HWCc#52=203

Alternative JSON encoding:

{"HWCIDs":[52],"HWCColor":{"ColorRGB":

{"Red":52,"Green":213,"Blue":255}}}

Text
HWCt#54=|||Output 6|1|Feed1|Drone||1

Alternative JSON encoding:

{"HWCIDs":[53],"HWCText":

{"Formatting":7,"Title":"Output
6","Textline1":"Feed1","Textline2":"Drone","PairMo

de":1}}

Fader Position:
HWCx#87=21035

Alternative JSON encoding:

{"HWCIDs":[53],"HWCExtended":

{"Interpretation":5,"Value":555}}

Message Encoding
Raw Panel ASCII Command sequence (v1):
HWC#53=4

HWCc#53=136

HWCx#53=21035

HWCt#53=|||Output 6|1|Feed1|Drone||1

Raw Panel ASCII JSON (v2):

{"HWCIDs":[53],"HWCMode":{"State":4},"HWCColor":
{"ColorIndex":{"Index":8}},"HWCExtended":
{"Interpretation":5,"Value":555},"HWCText":
{"Formatting":7,"Title":"Output
6","Textline1":"Feed1","Textline2":"Drone","PairMode":1}}

Raw Panel Binary Protobuf command:

34 00 00 00 42 32 0a 01 35 12 02 10 04 1a 04 12 02 08 08 22
05 10 05 18 ab 04 2a 1c 18 07 3a 08 4f 75 74 70 75 74 20 36
4a 05 46 65 65 64 31 52 05 44 72 6f 6e 65 60 01

Two non-binary and a protobuf met at a bar...
On the side of a Raw Panel client (your product!), Raw Panel can be encoded both in ASCII form and in binary form.
The availability will depend on the given panel. UniSketch panels (SKAARHOJs line up until recently) support ASCII
V1 only. Blue Pill panels (new platform) supports both ASCII V1, V2 (JSON encoding) as well as binary Protocol
Buffer encoded form.

ASCII V1 supports all essentials of Raw Panel, it's just encoded in a proprietary way that is sometimes great and at
other times clumsy. The example above shows how easy it is to turn a button on (HWC#53=4) while putting content
into a display is more easy to decipher when looking at the JSON version (v2). Most third party integrators will get
started with ASCII v1 and if they need to, they will jump to ASCII V2 or even the binary encoding.

The Binary encoding is used internally in all SKAARHOJ products and basically falls right out of the Google Protocol
Buffer libraries which are conveniently integrated, so it's really the far easiest and fastest option for us. It should also
be your choice if you intend to integrate Raw Panel with Go (Golang) since we have a lot of free libraries available for
all that handling and conversion.

Where's Waldo?

Network Discovery
SKAARHOJ panels are easily
discovered on your network
using ZeroConf/mDNS look-up.

 <stop offset="0%" style="stop-color:rgba(64,64,64,0.9);" />

 <stop offset="26%" style="stop-color:rgba(166,166,166,0.9);" />

 <stop offset="28%" style="stop-color:rgba(194,194,194,0.9);" />

 <stop offset="45%" style="stop-color:rgba(186,186,186,0.9);" />

 <stop offset="55%" style="stop-color:rgba(117,117,117,0.9);" />

 <stop offset="59%" style="stop-color:rgba(153,153,153,0.9);" />

 <stop offset="100%" style="stop-color:rgba(41,41,41,0.9);" />

 </linearGradient>

 <radialGradient id="ElastomerJoystick">

 <stop offset="40%" style="stop-color:rgba(100,100,100,0.2);" />

 <stop offset="59%" style="stop-color:rgba(190,190,190,0.2);" />

 <stop offset="60%" style="stop-color:rgb(130,130,130,0.2);" />

 <stop offset="100%" style="stop-color:rgb(130,130,130,0.2);" />

 </radialGradient>

 <linearGradient id="ElastomerZoomerRocker" x1="0%" y1="0%" x2="0%" y2="100%">

 <stop offset="0%" style="stop-color:rgba(130,130,130,0.2);" />

 <stop offset="25%" style="stop-color:rgba(130,130,130,0.2);" />

 <stop offset="26%" style="stop-color:rgba(190,190,190,0.2);" />

 <stop offset="50%" style="stop-color:rgba(100,100,100,0.2);" />

 <stop offset="74%" style="stop-color:rgba(190,190,190,0.2);" />

 <stop offset="75%" style="stop-color:rgba(130,130,130,0.2);" />

 <stop offset="100%" style="stop-color:rgba(130,130,130,0.2);" />

 </linearGradient>

 </defs>

 <style>text {font-family:Sans,Arial;}</style>

 <rect width="3600" height="172" x="50" y="67" style="fill:url(#topedge);" />

 <rect width="3600" height="1380" x="50" y="239" style="fill:url(#frontplateBlue);" />

 <rect width="3600" height="180" x="50" y="1619" style="fill:url(#bottomedge);" />

 <rect width="60" height="1743" x="0" y="63" style="fill:url(#sides);" rx="10" ry="10" />

 <rect width="60" height="1743" x="3640" y="63" style="fill:url(#sides);" rx="10" ry="10" />

 <defs>

 <linearGradient id="frontplateBlack" x1="0%" y1="0%" x2="0%" y2="100%">

 <stop offset="0%" style="stop-color:rgb(66, 66, 66);stop-opacity:1" />

 <stop offset="50%" style="stop-color:rgb(39, 39, 39);stop-opacity:1" />

 <stop offset="100%" style="stop-color:rgb(31, 31, 31);stop-opacity:1" />

 </linearGradient>

 </defs>

 <rect width="412" height="712" x="2376.3" y="829" rx="30" ry="30"

style="fill:url(#frontplateBlack);" />

</svg>

{

 "HWc": [

 {

 "id": 1,

 "x": 231,

 "y": 1439,

 "txt": "PRV 1",

 "type": 132

 },

 {

 "id": 2,

 "x": 404,

 "y": 1439,

 "txt": "PRV 2",

 "type": 132

 },

 {

 "id": 3,

 "x": 578,

 "y": 1439,

 "txt": "PRV 3",

 "type": 132

 },

 {

 "id": 4,

 "x": 752,

 "y": 1439,

 "txt": "PRV 4",

 "type": 132

 },

 {

 "id": 5,

 "x": 925,

 "y": 1439,

 "txt": "PRV 5",

 "type": 132

 },

 {

 "id": 6,

 "x": 1099,

 "y": 1439,

 "136": {

 "w": 210,

 "h": 130,

 "out": "rgb",

 "in": "b4",

 "desc": "Elastomer Four-Way Button"

 },

 "138": {

 "w": 210,

 "h": 130,

 "out": "rgb",

 "in": "b4",

 "desc": "Elastomer Four-Way Button",

 "disp": {

 "w": 112,

 "h": 32

 },

 "sub": [

 {

 "_": "r",

 "_x": -111,

 "_y": -189,

 "_w": 221,

 "_h": 76,

 "rx": 5,

 "ry": 5,

 "style": "fill:rgb(33,33,33);"

 }

]

 },

 "141": {

 "w": 127,

 "h": 31,

 "out": "rgb",

 "desc": "LED-Bar, 3 steps",

 "ext": "steps",

 "sub": [

 {

 "_": "c",

 "_x": -40,

Self Describing Topology

JSON and SVG
Panels can deliver a complete
description of their features via a
combination of a SVG basis and
a JSON data structure that
describes every hardware
component.

Components are characterized
by features such as input type
(binary, pulsed, analog and
intensity), their output (rgb led),
extended features such as
motorized faders and of course
associated display resolution and
color style (b/w, gray, rgb)

SKAARHOJ uses nothing but the
topology SVG and JSON to
render the visualization of panels
in our applications and
emulators. If we can do it, you
can do it too!

R
eal W

orld P
anel Em

ul
at

ed
 P

an
el

Same Same
SKAARHOJ provides an emulator for Windows, Mac and Linux which can emulate any SKAARHOJ panel.

It will start a TCP server and open up a web browser with a view based on the panels topology. You can
interact with the virtual panel - press buttons, turn encoders, drag faders and joysticks around. The emulator
will also display text, graphics and LED colors faithfully. The emulator will even emulate button and display
brightness commands and the sleep timer!

Have Fun Learning
Panel Explorer
We have made an awesome
exploration tool to play your way into
Raw Panel. With Panel Explorer
(Windows/Mac/Linux) you can not
only scan your network for available
panels, you can also connect to them,
try to send over feedback commands
for colors and display contents - and
you will see the commands shown. It
will get you up to speed in no time.

Triggers from the panel are also
displayed in Panel Explorer. There is
even a "trigger scope" that draws the
triggers graphically and analyses
various timing aspects.

Oh, did we mention - the source code
(written in Go) is MIT licensed and
public! There are binaries for
download at Github too.

https://github.com/SKAARHOJ/raw-
panel-explorer

https://github.com/SKAARHOJ/raw-panel-explorer
https://github.com/SKAARHOJ/raw-panel-explorer

{ Raw Panel API Manual }

The golden QR code

SKAARHOJ ApS - Rosenkaeret 11C - 2860 Soeborg - Denmark - www.skaarhoj.com

http://www.skaarhoj.com

